Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow.

نویسندگان

  • Zhao Yu
  • Liang-Shih Fan
چکیده

The application of the lattice Boltzmann method in two-phase flows is often restricted by the numerical instability at low viscosities. In this work, a multirelaxation-time (MRT) lattice Boltzmann model (LBM) is developed using the interaction potential approach. With the MRT collision term and a general force term, the new MRT model is able to significantly enhance the numerical stability at low viscosities, without appreciable increase in computation time or memory use. Advanced force formulation using the multirange potential can also be readily incorporated into the current MRT scheme. Numerical tests are first performed in two dimensions under equilibrium conditions. The MRT model is able to reduce the lowest stable viscosity by an order of magnitude compared to the single relaxation time LBM. In addition, the spurious velocity at the gas-liquid interface can also be significantly decreased by tuning the adjustable relaxation parameters. Then two sets of three-dimensional simulations are conducted to investigate the buoyant rise of a gas bubble in a low-viscosity liquid. In particular, millimeter air bubble in water, which is difficult for traditional two-phase LBM due to both low viscosity and high-surface tension, is successfully simulated using the MRT technique developed in this study. The simulated bubble shape and velocity are compared with the experimental results and empirical correlations in the literature, and the satisfactory agreement proves the validity of the MRT-LBM for two-phase flows.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrodynamic investigation of multiple rising bubbles using lattice Boltzmann method

Hydrodynamics of multiple rising bubbles as a fundamental two-phase phenomenon is studied numerically by lattice Boltzmann method and using Lee two-phase model. Lee model based on Cahn-Hilliard diffuse interface approach uses potential form of intermolecular forces and isotropic finite difference discretization. This approach is able to avoid parasitic currents and leads to a stable procedure t...

متن کامل

Arterial Blood Flow Blockage Time Due to an Interaction between a Foreign Second Phase and an Externally Originated Particle

A huge number of deaths in the world are the direct or indirect consequence of a disease which is called atherosclerosis. The disease could be due to an artery blockage by the interaction of an externally second phase with a particle which is entered to the bloodstream. The effect of some most important physical and geometrical affecting parameters on the blockage time of a microchannel due to ...

متن کامل

Heat Transfer Enhancement of Al2O3–H2O Nanofluid Free Convection in Two-Phase Flow with Internal Heat Generation Using Two Dimensional Lattice Boltzmann Method

A two-phase lattice Boltzmann model considering the interaction forces of nanofluid has been developed in this paper. It is applied to investigate the flow and natural convection heat transfer of Al2O3–H2O nanofluid in an enclosure containing internal heat generation. To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann metho...

متن کامل

Numerical Simulation of Fluid Flow Past a Square Cylinder Using a Lattice Boltzmann Method

The method of lattice boltzmann equation(LBE) is a kinetic-based approach for fluid flow computations. In the last decade, minimal kinetic models, and primarily the LBE, have met with significant success in the simulation of complex hydrodynamic phenomena, ranging from slow flows in grossly irregular geometries to fully developed turbulence, to flow with dynamic phase transitions. In the presen...

متن کامل

Dispersion and Deposition of Micro Particles over Two Square Obstacles in a Channel via Hybrid Lattice Boltzmann Method and Discrete Phase model

Dispersion and deposition of aerosol particles over two square cylinders confined in a channel in laminar unsteady vortical flow were investigated numerically. Lattice Boltzmann method was used to calculate fluid characteristics and modify Euler method was employed as Lagrangian particle tracing procedure to obtain particle trajectories. Drag, Saffman lift, gravity, buoyancy and Brownian motion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 82 4 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2010